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1 What is it all about?

The following chapter presents the basics of ellipsometry and discusses some recent ad-

vances. The article covers the formalism and theory used for data analysis as well as

instrumentation. The treatment is also designed to familiarize newcomers to this field.

The experimental focus is on adsorption layers at the air-water and oil-water interface.

Selected examples are discussed to illustrate the potential as well as the limits of this

technique. The authors hope, that this article contributes to a wider use of this technique

in the colloidal physics and chemistry community. Many problems in our field of science

can be tackled with this technique.

Ellipsometry refers to a class of optical experiments which measure changes in the state

of polarization upon reflection or transmission on the sample of interest. It is a powerful

technique for the characterization of thin films and surfaces. In favorable cases thicknesses

of thin films can be measured to within Å accuracy, furthermore it is possible to quantify

submonolayer surface coverages with a resolution down to 1/100 of a monolayer or to

measure the orientation adopted by the molecules on mesoscopic length scales. The high

sensitivity is remarkable if one considers that the wavelength of the probing light is on

the order of 500 nm. The data accumulation is fast and allows to monitor the kinetics of

adsorption processes. The technique can also be extended to a microscopy. Imaging ellip-

sometry allows under certain conditions a direct visualization of surface inhomogeneities

as well as quantification of the images. Many samples are suitable for ellipsometry and

the only requirement is that they must reflect laser light. Its simplicity and power makes

ellipsometry an ideal surface analytical tool for many objects in interface science.

2 Polarized light

Light is an electromagnetic wave and all its features relevant for ellipsometry can be

described within the framework of Maxwell’s theory [1]. The relevant material properties

are described by the complex dielectric function ε or alternatively by the corresponding

refractive index n.
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An electromagnetic wave consists of an electric field ~E and a magnetic field ~B. The field

vectors are mutually perpendicular and also perpendicular to the propagation direction

as given by the wave vector ~k. All states of polarization are classified according to the

trace of the electrical field vector during one period. Linearly polarized light means the

electrical field vector oscillates within a plane, elliptically polarized light means that the

trace of the electric field vector during one period is an ellipse. A convenient mathematical

representation of a given state of polarization is based on a superposition of two linearly

polarized light waves within an arbitrarily chosen orthogonal coordinate system.

~E(~r, t) =





|Ep| cos(2πνt− ~k · ~r + δp)

|Es| cos(2πνt− ~k · ~r + δs)



 (1)

|Ep| and |Es| are the amplitudes, δp and δs the phases, |~k| = 2π/λ is the magnitude of the

wave vector and ν the frequency. Only the phases δp, δs and the amplitudes are required

for a representation of the state of polarization; the time dependence is not of importance

and can be neglected. The so called Jones vector reads

~E =





|Ep|eiδp

|Es|eiδs



 =





Ep

Es



 (2)

Different states of polarization are depicted in Fig. 1. The state of polarization is

a) linear, if δp − δs = 0 or δp − δs = π,

b) elliptical, if δp 6= δs and |Ep| 6= |Es|,

c) circular for the special case δp − δs = π/2 and |Ep| = |Es|.

handedleft handed    right 

Phase shift

0

7λ/8

3λ/4

3λ/85λ/8

λ/4

λ/2

λ/8

S

P

Figure 1: The Jones representation of polarized light represents any state of polarization as a linear

combination of two orthogonal linearly polarized light waves.
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An alternative representation of a given state of polarization uses the quantities ellipticity

ω and azimuth α. The ellipticity is defined as the ratio of the length of the semi-minor

axis to that of the semi-major axis as shown in Fig. 2. The azimuth angle α is measured

counterclockwise from the Ýx-axis. Light is assumed to propagate in positive Ýz direction

so that Ýx, Ýy and Ýz define a right handed coordinate system. Some authors prefer this

representation and for this reason the conversion formulas between both notations are

listed below. The derivations require a vast number of tedious algebraic manipulations

and can be found in [2].

tan 2α =
2ExEycos(δy − δx)

E2
x − E2

y

− 90◦ ≤ α ≤ 90◦ (3)

sin(2ω) =
2ExEy sin(δy − δx)

E2
x + E2

y

− 45◦ ≤ ω ≤ 45◦ (4)

tan(δy − δx) =
tan(2ω)

sin(2α)
− 180◦ ≤ δy − δx ≤ 180◦ (5)

cos

(

2 arctan

(

Ey

Ex

))

= cos(2ω) cos(2α) 0◦ ≤ arctan(Ex/Ey) ≤ 90◦ (6)

Ambiguities arising from the inversion of trigonometric functions are settled if the upper

and lower limits of all quantities are considered.

Figure 2: Elliptically polarized light defined by the azimuth α and the ellipticity ω
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3 Basic equation of ellipsometry

A typical ellipsometric experiment is depicted in Fig. 3. Light with a well defined state

of polarization is incident on a sample. The reflected light usually differs in its state of

polarization and these changes are measured and quantified in an ellipsometric experiment.

S

P  

o

s  

p   

Figure 3: Ellipsometric experiment in reflection mode

The mathematical description is best done within the laboratory frame of reference defined

by the plane of incidence. The propagation direction of the beam and the normal of the

reflecting surface define the plane of incidence. Light with an electric field vector oscillating

within the plane of incidence (Ýp-light) remains linearly polarized upon reflection and the

same holds for Ýs-light with ~E perpendicular to the plane of incidence. For this reason Ýp-

and Ýs-light are also called Eigen-polarizations of isotropic media or uniaxial perpendicular

media. This consideration makes it obvious that this frame of reference is distinct. Incident

and reflected beam can be described by their corresponding Jones vector :

~Einc =





|Ei
p|eiδ

i
p

|Ei
s|eiδ

i
s



 ~Erefl =







|Er
p|eiδ

r
p

|Er
s |eiδ

r
s





 (7)

Two quantities Ψ and ∆ are introduced in order to describe the changes in the state of

polarization.

∆ = (δrp − δrs)− (δip − δis) (8)
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tanΨ =
|Er

p|/|Ei
p|

|Er
s |/|Ei

s|
(9)

Changes in the ratio of the amplitudes are described as the tangent of the angle Ψ . It will

turn out later that Ψ can be directly measured.

The reflectivity properties of a sample within a given experiment are given by the corre-

sponding reflection coefficients rp and rs. The reflection coefficient is a complex quantity

that accounts for changes in phase and amplitude of the reflected electric field Er with

respect to the incident one Ei.

rp =
|Er

p|
|Ei

p|
ei(δ

r
p−δip) rs =

|Er
s |

|Ei
s|
ei(δ

r
s−δis) (10)

Interference cannot be observed between orthogonal beams and hence Ýp- and Ýs-light do

not influence each other and can be separately treated. With these definitions the basic

equation of ellipsometry is obtained

tanΨ · ei∆ =
rp
rs

= ρ = <(ρ) + i=(ρ) (11)

Eqn. (11) relates the quantities Ψ and ∆ with the reflectivity properties of the sample.

The following two section discuss various ways to measure ∆ and Ψ and the theory and

algorithm used for a calculation of the complex reflectivity coefficient. Some ellipsometers

are designed in a way that they measure directly the real and imaginary part of the complex

quantity ρ instead of Ψ and ∆. Eqn. (11) allows a conversion between both notations.

4 Design of an ellipsometer

Many different designs of ellipsometers have been suggested and a good overview is pre-

sented in Azzam and Bashara [3]. Here we discuss common roots of all arrangements and

the underlying theory.

The layout of a typical ellipsometer is depicted in Fig. 4. The main components are a

polarizer P which produces linearly polarized light, a compensator C which introduces a

defined phase retardation of one field component with respect to the orthogonal one, the

sample S, the analyzer A and a detector.
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Laser + λ/4-Plate

Polarizer

Compensator Analyzer

x

y Sample

Detector
P

C A

Figure 4: Ellipsometer in a PCSA-configuration

This setup allows the determination of the unknown ellipsometric angles and can be oper-

ated in various modes. Each optical component modifies the state of polarization. Since

any state of polarization can be represented by a complex Jones vector consisting of two

columns, the effect of each optical components is described by a complex 2 × 2 matrix.

The Jones formalism provides an elegant means for a quantitative description [4].





Ex

Ey





Ja

=





T11 T12

T21 T22





J 



Ex

Ey





Je

= TJ ~EJe (12)

The superscript J refers to the optical component J ∈[PCSA]; the subscripts e and a

refer to the ~E-vector before and after the component. Each of the optical components

including the sample possesses a distinct coordinate system in which the corresponding

matrix is diagonal. For example a compensator consist of a birefringent material cut to a

thin plate of a defined thickness t. Optically it possesses a fast and a slow axis. Linearly

polarized light oscillating parallel to either axis remains linearly polarized, however, since

the corresponding refractive indices of fast nf and slow axis ns differ, they travel with

different speed which leads to a phase shift φ = (nf − ns) · t · 2π/λ between the two

components. Similar expressions can be given for each component:
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component coordinate system Jones-Matrix

Polarizer
tP = transmission axis

eP = extinction axis
TP =





1 0

0 0





Compensator
sc = slow axis

lc = fast axis
TC =





1 0

0 ρc





with ρc = tce
iδc =

|ECa
s |

|ECa
l |

ei(δs−δl)

Sample

eigenpolarization

p parallel to plane of incidence

s perpendicular to plane of incidence

TS =





rp 0

0 rs





Analyzer
tA = transmission axis

eA = extinction axis
TA =





1 0

0 0





The simple diagonal matrix is only valid in the coordinate system of the component. A

matrix R is required to transform the vector between the coordinate systems of adjacent

components.

~EJ+1,e
xy = R(α) ~EJ,a

xy with R(α) =





cosα sinα

− sinα cosα



 (13)

The setting of the optical components is defined by the angles P , A and C of its distinct

axis, with respect to the plane of incidence. An angle C = −45◦ means the fast axis of

the compensator is set to an angle of −45◦ with respect to the plane of incidence.

With these tools we can describe the E-vector at the detector as a function of the setting
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of all components including the unknown reflectivity properties of the sample.

~EA, a
eA tA

= TAR(A)TSR(−C)TCR(C − P ) ~EP,a
eP tP

(14)

To understand Equation (14), one must first realize that the multiplication always goes

from right to left. Hence, the above mathematical formula can be described as follows:

linear polarized light exits the polarizer in the polarizer’s frame of reference, then is rotated

to the coordinate system of the compensator by the matrix operator R(C − P ), then the

compensator acts on the state of polarization as given by TC , then the exiting light from

the compensator is rotated to the coordinate system of the sample by the matrix operator

R(−C) an so on. The multiplication given by Equation (14) yields:

~EA, a
eA tA

=





EA, a
tA

0



 =





1

0



 γEP, a
tP

{Ω1 + Ω2} (15)

Ω1 = Rp cosA[cosC cos(C − P )− ρc sinC sin[(C − P )]

Ω2 = Rs sinA[sinC cos(C − P ) + ρc cosC sin[(C − P )]

γ accounts for the attenuation of the light intensity. Additional components in the optical

path, for example the cell windows, should not change the state of polarization and can

therefore be neglected. The intensity at the detector is proportional to

I ∝ | ~EA, a
eA tA

|2 (16)

The Jones matrix algorithm leads to the desired relation between the intensity at the

detector and the setting of all optical components. The unknown reflectivity coefficients

can be retrieved in various manners and the applied measurement scheme names the

method. Rotating analyzer means recording the intensity as a function of the setting

of the analyzer and work out the unknown ellipsometric angles by a Fourier analysis.

Polarization modulation ellipsometry uses a variable phase retardation δc for a calculation

of the ellipsometric angles. Polarization modulation uses an electro-optic or acusto-optic

modulator driven at a high frequency. The measurement is fast, however, there are also

some inherent problems due to an undesired interferometric contribution of the modulator

to the signal which cannot be separated from the contribution of the sample. The technique

is very well suited to follow relative changes.
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A particular successful implementation is Nullellipsometry which eliminates many intrinsic

errors due to slight misalignments of the sample. Within Nullellipsometry the setting of

the optical components is chosen such that the light at the detector vanishes. This requires

that the angle dependent term {Ω1 +Ω2} of eqn. (15) vanishes. A given elliptical state of

polarization of the incident light leads to linear polarized light after reflection and can be

completely extinguished with an analyzer.

rp
rs

= − tanA
tanC + ρc tan(C − P )

1− ρc tanC tan(C − P )
for I = 0 (17)

This equation can be further simplified by using a high precision quarter waveplate as a

compensator (tC = 1, δC = π/2 =⇒ ρc = −i) fixed to C = ±45◦. With eqn. (11) a further

simplification of the eqn. (17) can be achieved.

tanΨei∆ = rp
rs

= tanA0 exp[i(2P0 +
π
2
)] if C = −45◦

tanΨei∆ = rp
rs

= − tanA0 exp[i(
π
2
− 2P0)] if C = 45◦

(18)

Eqn. (18) links the quantities ∆ an Ψ to the null settings of the polarizerP0 and analyzer

A0. Once a setting (P0, A0) has been determined which provides a complete cancellation

of the light, then the same holds for the pair (P̃0, Ã0).

(P̃0, Ã0) = (P0 + 90◦, 180◦ − A0) if I = 0 for (P0, A0) (19)

These nontrivial pairs of nullsettings are refered as ellipsometric zones. Measurements

in various zones lead to a high accuracy in the determination of absolute values. Many

intrinsic small errors due to misalignment are cancelled by this scheme.

So far we introduced two quantitites which account for changes in the state of reflection

upon reflection. We also discussed how these quantities can be measured. The next

chapter deals with the theory of reflection and illustrates means for a calculation of the

ellipsometric angles of a given optical layer system.

5 Theory of reflection

In the following section a procedure for a calculation of the reflectivity coefficients rp and rs

(and consequently the ellipsometric angles) first published by Lekner [6] will be described.
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This method is certainly not the easiest one for the calculation of the reflectivity properties

of a single homogenous layer at the interface between two bulk phases, but is advantageous,

if the layer has an inner structure, e.g. a continuously varying refractive index normal to

the interfaces. For just a few refractive index profiles it is possible to calculate rp and rs

exactly, but in most cases approximations must be used: A continuously varying refractive

index profile is subdivided into many thin layers. This method uses matrices to relate the

electrical field and its derivative in between adjacent layer and matrices to account for

changes of the phase in each layer. In every layer the refractive index is assumed to be

constant. Obviously this approximation gets the better the finer the subdivision is.

For the derivation we use a rectangular coordinate system with the Ýz-axis normal to

the interfaces pointing from the incident medium to the substrate. This means that the

interfaces of the layer structure are planes of constant zn. The Ýx, Ýz-plane is the plane of

incidence.

z
N+1

z
2

z
1

n, ε

z

 

Figure 5: Subdivision of a refractive index profile into step profiles

We start with Maxwell’s equation. In the case of no magnetization, no free charges, no

current in and linear polarizability of the sample they read:

∇× ~B =
ε

c2
· ∂

~E

∂t
(20)
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∇× ~E = −∂ ~B

∂t
(21)

∇ · ~B = 0 (22)

∇ · ~E = 0 (23)

with ~B representing the magnetic field, ~E the electric field, ε(z) = n(z)2 the dielectric

function and c the velocity of light in vacuo.

For the ~B- and the ~E-field a plane wave ansatz is used:

~B = ~B0 · ei(
~k·~r−ωt), ~E = ~E0 · ei(

~k·~r−ωt) (24)

This ansatz fulfills Maxwell’s equations, if the following relationship between the wave

vector ~k and the angular frequency ω of the propagating wave is obeyed:

~k2 + ε
ω2

c2
= 0, (25)

and if additionally ~B0, ~E0 and ~k are normal to each other. Thus eqn. (20) and eqn. (21)

can be further simplified:

∇× ~B = −i
εω

c2
~E ∇× ~E = iω ~B (26)

Let’s consider Ýs-polarized light, that can be represented in the following way in the coor-

dinate system:

~Es =







0

Ey

0





 (27)

Inserting ~Es in eqn. (26) results in three equations for Ey:

−∂Ey

∂z
= i

ω

c
Bx

∂Ey

∂x
= i

ω

c
Bz

∂Bx

∂z
− ∂Bz

∂x
= −i

ω

c
Ey (28)

After elimination of Bx and Bz one obtains a differential equation in Ey which can be

separated:
∂2Ey

∂x2
+

∂2Ey

∂z2
+ ε

ω2

c2
Ey = 0 (29)

The ansatz Ey(x, z, t) = ei(kxx−ωt) · E(z) leads to a differential equation in E(z):

d2E(z)

dz2
+ q2E(z) = 0, (30)
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with q being the Ýz-component of the wave vector:

q2 = ε
ω2

c2
− k2

x = k2 − k2
x or q =

√
ε
ω

c
· cosϕ (31)

and ϕ representing the angle of incidence (defined as the angle between the surface normal

and the direction of propagation of the light beam). Since E(z) is continuous at every

interface, it is obvious from eqn. (30), that also dE(z)/dz is continuous, if dε 6= ∞.

Eqn. (30) can thus be split into two coupled differential equations of first order:

dE(z)

dz
= D(z) und

dD(z)

dz
= −q2E (32)

If q takes the value qn within a layer located between zn and zn+1, and En and Dn are the

values of the electric field and its derivative at zn, the solution of eqn. (32) in zn ≤ z ≤ zn+1

is:

E(z) = En cos qn(z − zn) +
Dn

qn
sin qn(z − zn), (33)

D(z) = Dn cos qn(z − zn)− Enqn sin qn(z − zn). (34)

Since E and D are continuous at the interfaces, it follows that

En+1 = En cos δn +
Dn

qn
sin δn

Dn+1 = Dn cos δn − Enqn sin δn,

(35)

with

δn = qn(zn+1 − zn) (36)

representing the phase shift encountered while propagating through the layer. The eqn. (35)

can be expressed in a matrix form:

(

En+1

Dn+1

)

=

(

cos δn
sin δn
qn

−qn sin δn cos δn

)(

En

Dn

)

= Mns ·

(

En

Dn

)

(37)

where Mns describes the influence of the n-th layer on the Ýs-polarized wave.

The matrices for Ýp-polarized light can be calculated analogously. Since Ýp-light has non-

vanishing Ýx- and Ýz-components of the electrical field in the chosen coordinate system,
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it is more convenient to use the linearly coupled magnetic field ~B, which has just one

nonvanishing component, instead of ~E.

~B =







0

By

0





 =







0

ei(kxx−ωt)B(z)

0





 (38)

Insertion of ~B into Maxwell’s equations and simplification lead to a differential equation

in B(z):

d

dz

(

1

ε

dB(z)

dz

)

+
q2

ε
B(z) = 0, (39)

that can be split into two equations of first order again:

1

ε

dB(z)

dz
= C and

dC(z)

dz
= −q2

ε
B(z) (40)

Their solutions within a layer n resemble those of the Ýs-polarized light (eqn. (33) and

eqn. (34)):

B(z) = Bn cos qn(z − zn) +
εn
qn

Cn sin qn(z − zn) (41)

C(z) = Cn cos qn(z − zn)−
qn
εn
Bn sin qn(z − zn) (42)

It follows from eqn. (20) and eqn. (39) that B(z) and C(z) are continuous at the layers’

interfaces, if dε 6= ∞. This can be used again to relate the values of B and C at neighboring

interfaces.
(

Bn+1

Cn+1

)

=

(

cos δn
εn
qn

sin δn

− qn
εn
sin δn cos δn

)(

Bn

Cn

)

= Mnp

(

Bn

Cn

)

(43)

Now it is clear how to calculate the reflectivity coefficients of such a layer structure: The

layers’ matrices Mn have to be multiplied consecutively, separately for Ýp- and Ýs-light:

M =

(

m11 m12

m21 m22

)

= MN ·MN−1 · · ·M2 ·M1 (44)

The resulting matrices Ms and Mp relate the fields before and after the layer structure.
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Before it (f) there are incident and reflected wave, behind it (h) just the transmitted one:

E1 = eiqfz1 + rse
−iqfz1 =⇒ D1 = iqf (e

iqfz1 − rse
−iqfz1)

EN+1 = tse
iqhzN+1 =⇒ DN+1 = iqhtse

iqhzN+1

B1 = eiqfz1 − rpe
−iqfz1 =⇒ C1 = iqf (e

iqfz1 + rpe
−iqfz1)

BN+1 =
√

εh
εf
tpe

iqhzN+1 =⇒ CN+1 = iqh
√

εh
εf
tpe

iqhzN+1

(45)

Thus the following relations evolve:
(

tse
iqhzN+1

iqhtse
iqhzN+1

)

=

(

m11s m12s

m21s m22s

)(

eiqfz1 + rse
−iqfz1

iqf (e
iqfz1 − rse

−iqfz1)

)

(46)

(
√

εh
εf
tpe

iqhzN+1

iqh
√

εh
εf
tpe

iqhzN+1

)

=

(

m11p m12p

m21p m22p

)(

eiqfz1 − rpe
−iqfz1

iqf (e
iqfz1 + rpe

−iqfz1)

)

(47)

These equations can be solved for rs and rp, resulting in two formally identical expressions

for the two coefficients:

rs = e2iqfz1
qfqhm12s +m21s − iqhm11s + iqfm22s

qfqhm12s −m21s + iqhm11s + iqfm22s
(48)

−rp = e2iqfz1
qf qh
εf εh

m12p +m21p − i qh
εh
m11p + i

qf
εf
m22p

qf qh
εf εh

m12p −m21p + i qh
εh
m11p + i

qf
εf
m22p

(49)

Up to now the only simplification is the discretization of the continuous refractive in-

dex profile. The next step is a reduction of the computational effort by using a Taylor-

approximation up to the second order in the phaseshift δn. This approximation is valid if

the discrete layer thicknesses are much smaller than the wavelength of the light: in other

words a sufficiently high number of layers is required.

Mn =

(

cos δn
sin δn
qn

−qn sin δn cos δn

)

and

(

cos δn
εn
qn

sin δn

− qn
εn
sin δn cos δn

)

(50)

for Ýs- and Ýp-polarized light simplify to

Mn ≈

(

1− δ2n
2

δn
qn

−qnδn 1− δ2n
2

)

and

(

1− δ2n
2

εnδn
qn

− qnδn
εn

1− δ2n
2

)

(51)

With just a slight increase of computational effort the approximation can be greatly im-

proved by using layers with linearly varying dielectric functions ε as depicted in fig.6

instead of those with constant ε.
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z
N+1

z
2

z
1

ε

z

 

Figure 6: Approximation of the real dielectric function by a system of layers with linearly varying

dielectric function ε

Using this ansatz the components of the individual layer matrices adopt the following

form:

m11s = 1 + (zn+1 − zn)
2
(

k2x
2
− ω2

c2
2εn+εn+1

6

)

m12s = zn+1 − zn

m21s = (zn+1 − zn)
(

k2
x − ω2

c2
εn+εn+1

2

)

m22s = 1 + (zn+1 − zn)
2
(

k2x
2
− ω2

c2
εn+2εn+1

6

)

m11p = 1 + (zn+1 − zn)
2
(

k2
x
2εn+εn+1

6εn
− ω2

c2
εn+2εn+1

6

)

m12p = (zn+1 − zn)
εn+εn+1

2

m21p = (zn+1 − zn)
(

k2x
2
( 1
εn

+ 1
εn+1

)− ω2

c2

)

m22p = 1 + (zn+1 − zn)
2
(

k2
x
εn+2εn+1

6εn+1
− ω2

c2
2εn+εn+1

6

)

(52)

Setting εn = εn+1 within a layer in eqn. (52)yields the step profile approximation eqn. (51).

>From the equations for rp and rs, eqn. (49) and eqn. (48), the ellipsometric angles ∆ and

Ψ of arbitrary layer structures can be calculated using the basic equation of ellipsometry

eqn. 11.
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6 Ellipsometry applied to ultrathin films

The previous section described an algorithm for the calculation on the reflectivity coeffi-

cients of given refractive index profiles. Profiles are only of importance if their characteris-

tic length scale is comparable to that of the probing beam. In many cases, i.e. adsorption

layer of nonionic surfactants at the air-water interface, there is a striking mismatch be-

tween interfacial height h and the wavelength of light λ. As a result certain peculiarities

exist which are discussed in this section [8].

The most striking limitation is a reduction of the measurable quantities. The presence

of an organic monolayer (refractive index 1.3-1.6) with a thickness below 2.5 nm does

not change the reflectivity |ri|2 and as a consequence there are no detectable changes in

Ψ . In the thin film limith ¼ λ the data analysis relies only on a single parameter,

namely changes in the phase ∆. Unfortunately the number of independent data cannot

be increased. Neither spectroscopic ellipsometry nor a variation of the angle of incidence

yield new independent data, instead all quantities remain strongly coupled. A sound

treatment is given in [9]. However, the sensitivity of an ellipsometric measurement can

be significantly increased by the choice of the angle of incidence. A sensitivity analysis is

given in [10].

The exact formula relating the reflectivity coefficients of a single homogeneous layer with

refractive index n1 =
√
ε1 in between two infinite media (n0 =

√
ε0 and n2 =

√
ε2) at an

angle of incidence ϕ is given by :

∆ = arctan
Im

(

rp
rs

)

Re
(

rp
rs

) with
rp = |rp| · eiδr,p = r0,1,p+r1,2,pe−i2β

1+r0,1,pr1,2,pe−i2β

rs = |rs| · eiδr,s = r0,1,s+r1,2,se−i2β

1+r0,1,sr1,2,se−i2β

(53)

where the reflectivity coefficients r0,1,p, r1,2,p, r0,1,s and r1,2,s describing the reflection at

refractive index jumps n0 → n1 and n1 → n2 for Ýp- and Ýs-light are given by Fresnel’s laws.

β = 2π h
λ

√

n2
1 − n2

0 sin
2 ϕ accounts for the phase shift occuring in a single pass within the

adsorption layer.

If the layer thickness h is much smaller than the wavelength λ of light it is justified to

expand the complex reflectivity coefficients in a power series in terms of h/λ. The first
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term in this expansion describes reflection at a monolayer.

∆ ≈
4
√
ε0ε2π cosϕ sin2 ϕ

(ε0 − ε2)((ε0 + ε2) cos2 ϕ− ε0)
· (ε1 − ε0)(ε2 − ε1)

ε1
· h
λ

(54)

If the refractive index is varying over the height of the layer, the term

(ε1 − ε0)(ε2 − ε1)

ε1
· h

within eqn. (63) has to be replaced by an integral η across the interface:

η =

∫

(ε− ε0) (ε2 − ε)

ε
dz (55)

An ellipsometric experiment on a monolayer yields a quantity proportional to η. A sim-

plification of eqn. (55) reveals its physical meaning. Quite often, as for example in case

of adsorption of organic compounds onto solid supports [7], ε2 exceeds ε of the monolayer

while ε ≈ ε0.

Under these circumstances eqn. (55) can be further simplified:

η =
ε2 − ε0

ε0

∫

(ε− ε0) dz (56)

A linear relationship between ε and the prevailing concentration c of amphiphile within

the adsorption layer is well established [11]

ε = ε0 + c
dε

dc
(57)

This relation yields a direct proportionality between the quantity η and the adsorbed

amount Γ.

η =
ε2 − ε0

ε0

dε

dc

∫

c dz =
ε2 − ε0

ε0

dε

dc
Γ (58)

None of the assumptions which lead to eqn. (58) apply for adsorption layers at the liquid-

air interface and hence eqn. (55) cannot be further simplified. The relationship between

monolayer data and recorded changes remains obscure with no further simplifications

possible on the basis of Maxwell’s equations. A proportionality between ∆ and Γ may

hold but it cannot be established within this theoretical framework.
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7 Microscopic model for reflection

Quantities such as refractive index or thickness are macroscopic quantities. Their meaning

at sub-monolayer coverage is not an obvious one. To bridge these inherent difficulties

several approaches have been developed aiming for a calculation of the optical properties

of a monolayer based on microscopic quantitities [12]. We follow here mainly a model

originally derived by Dignam et.al. [13, 14]. Explicit formulas are derived relating the

changes in ∆ to the polarizibility tensor of the adsorbed molecule and their number density

at the interface.

The adsorption layer is treated as a two dimensional sheet of dipoles driven by the external

laser field. The oscillating dipoles act as sources of radiation and the summation of all

their contributions yields the reflected beam in the far field.

The adsorption layer is considered as homogeneous, fluctuations in the orientation or

density occur on a length scale much smaller than the wavelength of light. These conditions

are usually fulfilled for adsorption layers of soluble surfactants.

The decisive new quantitity introduced by Dignam et. al. is the surface susceptibility

tensor ~γ

~γE0 = 4πPt (59)

which links the external electric field E0 to the resulting polarization per volume P, t

represents the thickness of the adsorbed layer. The polarization is given by the vector

sum of all dipole moments µj over all molecules j:

~γE0 = 4π
∑

j

µj (60)

The local field at each dipole has two origins, the external laser field E0 and the dipolar

contribution which is proportional to E0.

EL = E0 + ~βE0 (61)

Each adsorbed molecule is characterized by its own tensor β. The induced dipole moment

of a molecule with a polarizability αj is given by

µj = ~αjEjL = ~αj(1 + ~βj)E0 (62)
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with this notation the susceptibilty tensor ~γ reads:

~γ = 4π
∑

j

~αj(1 + ~βj) (63)

In order to calculate β it is desirable to introduce the field Eij, which accounts for the

electric field at the position ri generated by the dipole of molecule j.

Eij = ~fijµj (64)

~fij = (3~ρij − 1)/r3ij for i 6= j (65)

~fij = 0 for i = j (66)

The projection operator ~ρ projects the induced dipole moment on the connection of the

molecules at site i and j.

Eij = ~fij~αij(1 + ~βj)E0 (67)

With the relation:

∑

j

Eij = ~βiEo (68)

~βi is given by

~βi =
∑

j

~fij~αij

(

1 + ~βj

)

(69)

Each molecule is characterized by a tensor βj. For a further calculation certain assumptions

about the molecular distribution must be introduced. For adsorption layers of soluble

surfactants at the air-water interface it is a good approximation to consider β for all

molecules equal. The underlying molecular pircture is is that the adsorption layer consists

of one species of amphiphiles with a narrow angular distribution.
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Under these conditions:

β =
∑

j

~fij~αj (1 + β) (70)

meaning that

1 + β =

(

1−
∑

j

~fij~α

)−1

(71)

With equation 63 the surface susceptibility tensor reads:

~γ =
4πN~α

(1−
∑

j
~fij)~α

(72)

The number of molecules per unit area is denoted by N . For an uniaxial film with its

optical axis parallel to the surface normal the tangential t and normal n component of the

susceptibility tensor read:

γt =
4πNαt

(1− 4π/3(N/te)αt

(73)

γn =
4πNαn

(1− 8π/3(N/te)αn

(74)

The quantity te can be regarded as an effective thickness as defined as

te =
8/3πN

∑

i6=j 1/r
3
ij

(75)

If the adsorption layer can be mathematically represented as adsorbed molecules on a

rectangular grid with an average next neighbour distance of a

te =
8/3πa3N

(i2 + j2)−3/2
= 0.935a3N (76)

At monolayer coverage N = 1/a2 the effective thickness is te = 0.935a. The adsorption

of molecules at the interface changes the optical properties of the system. The changes in

the ellipsometric angles are given by
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ln

(

tanψ

tanψ0

)

+ i (∆−∆0) = δL (77)

In the thin film limit only changes in ∆ occur:

δLv =
i4π

λ
cosϕ

δγt
1− ε2

(

1 + δv, p
1− εsδγn/δγt
cot2 ϕ− 1/ε2

)

(78)

δγn,t denotes the difference of the susceptibility tensor between the film covered and the

bare surface, i =
√
−1, ϕ is the angle of incidence and λ is the wavelength of light.

Changes in the ellipsometric angle ∆ are given by the difference in L parallel and perpen-

dicular to the plane of incidence.

δ∆ = −i(δLp − δLs) (79)

The parallel component reads

−iδLp =
4π

λ
cosϕ

δγt
1− ε2

(

1 +
1− ε2δγn/δγt
cot2 ϕ− 1/ε2

)

(80)

whereas the perpendicular component is given by

−iδLs =
4π

λ
cosϕ

δγt
1− ε2

(81)

This model reflects the optical response at the molecular level, but the model suffers from

its complexity and high number of parameters, the values of which can only be assumed.

Since the macroscopic ansatz resulting in eqn. (54) comes to similar results with a properly

chosen dependence of the refractive index of the layer on the adsorbed amount, the use of

the microscopic model is not common in practical applications. In the following section

we will discuss some representative examples.
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8 Adsorption layers of soluble surfactants

8.1 Importance of purification

Due to the peculiarities of surfactant synthesis, many surfactants contain trace impuri-

ties of higher surface activity than the main component. These trace impurities do not

influence most bulk properties. However, at the surface they are enriched and impurities

may even dominate the properties of the interface. This behaviour was first recognized

by Mysels [15] and a purification scheme using foam fractionation was proposed [16]. A

detailed discussion on artifacts caused by impurities can be found in [17].

In studies performed in our lab, we use a fully automated purification device developed by

Lunkenheimer et. al. which ensures a complete removal of these unwanted trace impurities

[18]. The aqueous stock solution undergoes numerous of purification cycles consisting of

a) compression of the surface layer, b) its removal with the aid of a capillary, c) dilation to

an increased surface and d) formation of a new adsorption layer. At the end of each cycle

the surface tension σe is measured. The solution is referred to as surface chemically pure

grade if σe remains constant in between subsequent cycles. Quite frequently more than

300 cycles and a total time of several days are required to achieve the desired state. The

sample preparation is time consuming and tedious but mandatory for the investigation of

equilibrium properties of adsorption layers of soluble surfactants at the air-liquid interface.

8.2 Physicochemical properties of our model systems

In the following we discuss the interfacial properties of two related amphiphiles, the

cationic amphiphile 1-dodecyl-4-dimethylaminopyridinium bromide, C12-DMP, and the

closely related nonionic 2-(4’dimethylaminopyridinio)-dodecanoate, C12-DMP betaine.

The corresponding chemical structures are depicted in fig. 7 together with their equi-

librium surface tension isotherms. The synthesis is described in [19].

Both components are classical amphiphiles and resemble all common features such as the

existence of a critical micelle concentration cmc. The members of the homologous series

of the alkyl-dimethylaminopyridinium bromide are strong electrolytes and follow the pre-
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dictions of Debye-Hückel theory as experimentally verified by conductivity measurements.

For solubility reasons we used 1-butyl-4-dimethylaminopyridinium bromide instead of the

C12 representative of the homologous series which gave us experimental access to a wider

concentration range. Debye-Hückel predicts a proportionality of the activity coefficient

to the square root of the ionic strength for aqueous solutions of 1:1 electrolytes which is

indeed observed in our experiment.
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Figure 7: Chemical structures of the cationic amphiphile 1-dodecyl-4-dimethylaminopyridinium bro-

mide, C12-DMP bromide, and the closely related nonionic 2-(4’dimethylaminopyridinio)-dodecanoate,

C12-DMP betaine. The equilibrium surface tension σe of a purified aqueous solution of the ionic C12-DMP

bromide(squares) and the nonionic C12-DMP betaine(triangles) as a function of the bulk concentration

co. (redrawn from [20])

8.3 Adsorption layer of a nonionic surfactant

The ellipsometric isotherm ∆−∆0 of the nonionic amhiphile C12-DMP betaine is shown

in Fig. 8. It decreases in a monotoneous fashion and reaches a limiting value at higher

concentration. In order to assess its physical meaning we compare ∆−∆0 to the surface

excess retrieved from the surface tension isotherm Fig. 7. According to Gibbs’ fundamental

law:

Γ = − 1

mRT
· dσe

d ln a
≈ − 1

mRT
· dσe

d ln c
(82)

the total surface excess Γ is given by the derivative of the surface tension isotherm σe(c).
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Γ is then compared to the changes of the ellipsometric quantity ∆−∆0. The inset of Fig. 8

presents the result. The surface excess as given by the slope of the surface tension isotherm

is compared to the ellipsometric response at each concentration. Obviously the relation

between both quantities can be described by a straight line. Hence, experimental evidence

has been provided that ellipsometry measures indeed the surface excess of the adsorption

layer of the soluble nonionic amphiphile. Since optics measures refractive indices which

are not very sensitive to molecular details we anticipate that this holds for a wider class

of materials.
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Figure 8: Ellipsometric isotherm of the nonionic C12-DMP betain. The ellipsometric isotherm decreases

in a monotonic fashion and is proportional to the surface excess as can be seen in the inset, which compares

the surface excess according to Gibbs and the ellipsometric response. (redrawn from [20])

8.4 Ionic surfactant at the air-water interface

In the previous section it was shown that in spite of the uncertainties from the mathemat-

ical point of view concerning the interpretation of eqn. (55) a proportionality between ∆

and Γ can be established by a comparison of thermodynamic and ellipsometric data for a

nonionic surfactant at the air-water interface. In the following we will discuss a measure-



26

ment carried out on adsorption layers of an ionic surfactant. It will be demonstrated that

there are major differences between the two model systems.
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Figure 9: Characterization of the equilibrium properties of the adsorption layer by ellipsometry and Sur-

face second harmonic generation, SHG. The SHG-signal
√

I2ω(P = 45, A = 90) (circles) is proportional to

the surface coverage and increases monotonously with the bulk concentration. The ellipsometric quantity

d∆ = ∆ −∆0 (triangles) shows an extremum at an intermediate concentration far below the cmc. The

inset clearly shows the nonmonotonic dependency of d∆ on the adsorbed amount. (redrawn from [20])

Fig. 9 shows the ellipsometric isotherm ∆−∆0(triangles) of the cationic surfactant C12-

DMP bromide. A pronounced non-monotonic behaviour is shown with an extremum at

an intermidiate concentration far below the cmc. Also shown is the number density of

amphiphiles adsorbed to the interface (circles) as determined by Surface second harmonic

generation (SHG). At these bulk concentrations the measured number density equals the

surface excess Γ. SHG reveals a monotoneous increase in the surface excess in qualitative

agreement to a thermodynamic analysis within the Gibb’s framework. The data also

clearly prove that the ellipsometric quantity need not be proportional to the adsorbed

amount for a soluble ionic surfactant. What causes the nonmonotonous behaviour and

how can it be understood?

In the following we discuss some possible scenarios:
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Scenario 1: Filling up the adsorption layer

The adsorption layer is described as an isotropic optical layer of constant thickness with a

refractive index nlayer which depends on the surface coverage [21]. Within this model there

are two distinct surface concentrations which lead to a vanishing d∆ = ∆−∆0 = 0◦. At

very low coverage the refractive index of the layer matches the one of air nlayer = nair = 1

and at an intermediate surface coverage the surface layer adopts the very same refractive

index as the water bulk phase nlayer = nwater = 1.332. Consequently there has to be

an extremum in between. The resulting d∆(nlayer)-curve is depicted in Fig. 10. The

geometrical dimension of the molecules has been used as thickness of the layer.
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Figure 10: Simulation of the effect of a changing refractive index of a layer of constant thickness

h = 2.1nm on the ellipsometric signal d∆.

Obviously this scenario is not suitable to explain the measurement, the model predicts

even a wrong sign of d∆max ≈ 1.75◦ ! The experimental data require that nlayer > nwater

at all concentration. This means, water instead of air is the effective environment of this

particular amphiphile within the adsorption layer.
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Scenario 2: Effect of anisotropy

The following provides an estimation if changes in the molecular orientation may be respon-

sible for the surprising features in the ellipsometric isotherm. The following assumptions

were made in order to estimate an upper limit for this effect:

• The optical model is that of an uniaxial layer with the optical axis normal to the

interface. The molecular arrangement is C∞V which has been experimentally verified

for the headgroups by polarization dependent SHG measurements.

• The thickness of the adsorbed layer and the mean tilt angle of the molecules within

the layer change with their number density N at the interface. Within the investi-

gated number density range the thickness increases from 1nm to 1.9nm proportional

to the cosine of the tilt angle which is assumed to change from around 70◦ to 40◦.

• The whole molecule, including the head group, is assumed to change its tilt angle.

The molecules are assumed to be all-trans and perfectly aligned which would yield

the maximum possible change in anisotropy.

• The refractive index for an E-vector along the length axis of the molecule is naxis =

1.56, while the refractive index for an E-vector perpendicular to the long axis of

the molecule is nperp = 1.48. Both refractive indices have been taken from Riegler

et.al. [22] and rely on a combination of X-ray reflection data with ellipsometric

measurements of monolayers of behenic acid at the air-water interface for a densely

packed and perfectly oriented apmphiphiles. In our case the actual refractive indices

will depend on the prevailing volume concentration and the data are therefore an

upper limit.

The calculated d∆(N) versus density-curve is plotted in Fig. 11. Obviously a change of

the molecular tilt leads to changes in d∆, but cannot account for the measured pronounced

extremum. In addition it is impossible to reach d∆ = −2.77◦, which is the minimum of

the measured curve, with reasonable parameters for the anisotropic layer. An increase

in anisotropy has the same impact on the ellipsometric measurements as a reduction of
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Figure 11: Investigation of the impact of anisotropy on the ellipsometric signal. The ellipsometric signal

d∆ calculated in dependence of the number density of adsorbed molecules N. A molecular length of 2.1

nm and a refractive index of naxis = 1.56 for an E-vector along and of nperp = 1.48 for an E-vector

perpendicular to the molecular axis were used. The layer thickness (1.0nm to 1.9nm), the tilt angle (70◦

down to 40◦), ns and np were all assumed to be dependent on the surface coverage.

the layer thickness; hence, the only way to get nearer to d∆ = −2.77◦ is to diminish the

anisotropy!

At this point we would like to point out that the assumptions made for this simulation

are highly exaggerating the effect of the anisotropy. The SHG measurements reveal that

the heads do not change their tilt angle at all. In other words that only the tails may

change their tilt, which results in an even thinner anisotropic layer and therefore a smaller

effect. Additionally the tails are certainly neither all-trans nor perfectly oriented even at

the highest coverage measured 0.37nm2/molecule. For these reasons Fig. 11 represents an

upper limit of the impact of anisotropy. The real effect is by far smaller for the surface

coverages encountered here, which means that anisotropy cannot account for the surprising

feature of the ellipsometric isotherm.
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Scenario 3: Changing the counterion distribution

Ellipsometry probes the complete interfacial architecture. The reflected light is generated

within the transition region between the two adjacent bulk phases, air and aqueous surfac-

tant solution. The electric double layer has to be explicetely considered. Hence, changes

in the ion distribution at higher concentrations may cause the observed feature in the

ellipsometric isotherm.

The classical model of a charged double layer has been developed by Gouy, Chapman and

Stern. The interface is described by two distinct regions: a compact layer consisting of

the positively charged adsorbed amphiphiles with some directly adsorbed counterions and

a diffuse layer of counterions.

The ion distribution within the diffuse layer is given by the solution of the Poisson equation

which relates the divergence of the gradient of the electric potential Φ to the charge density

ρ at that point (see for instance [23, 24]):

div gradΦ =4Φ =− ρ

εoεr
(83)

The compact layer is positively charged and in contact with an electrolyte solution which

forms a diffuse layer of charges. The ion concentration distribution within the electrical

potential Φ obeys Boltzmann:

c− = c−o e
z−eΦ
kBT c+ = c+o e

− z+eΦ
kBT (84)

where z− and z+ are the valencies of the anions and cations respectively. For a symmetric

electrolyte solution (−z− = z+ = z and c−o = c+o = co) eqn.(84) leads to a net charge of

the ion cloud of

ρ = ze(c+ − c−) = −2coze sinh
zeΦ

kBT
(85)

The combination of eqn.(85) with the Poisson eqn.(83) yields a differential equation in the

electric potential Φ . In our case the potential is only a function of the normal coordinate

to the surface x. It is convenient to define a reduced potential
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y =
zeΦ

kBT
yo =

zeΦo

kBT
(86)

which further simplifies the equations and results in

d2y

dx2
=

2coz
2e2

kBTεoεr
sinh y = κ2 sinh y (87)

The integration of equation (87) with the boundary conditions (y = 0 and dy/dx = 0) for

x = ∞ and y = yo at x = 0 lead to the Gouy-Chapmann solution of the reduced potential

within the diffuse layer:

ey/2 =
eyo/2 + 1 +

(

eyo/2 − 1
)

e−κx

eyo/2 + 1− (eyo/2 − 1) e−κx
(88)

Hence, knowing the charge of the compact layer the ion distribution can be modelled. The

crux of Stern’s treatment is the estimation to which extent ions enter the compact layer

and reduce the surface potential. The ion distribution between compact and diffuse layer

cannot be easily experimentally established, for example surface potential measurements

cannot measure this distribution.

The optical analysis requires the translation of the prevailing distribution of molecules

and ions within the interphase into a corresponding refractive index profile. The reflec-

tivity coefficients can then be calculated on the basis the previously discussed numerical

algorithms for stratified media. Two elements dominate the refractive index profile and

hence the reflectivity properties, the topmost monolayer of the amphiphile and the distri-

bution of ions within the diffuse layer. The excess of ions within the diffuse layer leads

to a slightly elevated refractive index as compared to the bulk of the aqueous surfactant

solution. The typical dimensions of the diffuse layer are on the order of 10 nm and this

fairly wide extension leads to a profound impact on ∆, since the topmost monolayer has

a normal extension of only 2 nm. The solution of the potential Φ plugged into equation

(85) yields the distribution of anions and cations within the diffuse layer. The prevailing

charge distribution is determined by the surface charge of the topmost monolayer. The

refractive index profile is then determined by the ion distribution by a multiplication with
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the refractive index increment dn/dc which has been independently measured with an

Abbe refractometer.
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Figure 12: The interphase of a soluble cationic surfactant at the air-water interface at low (a) and high

(b) bulk concentration. It consists of a charged topmost cationic monolayer, a diffuse layer of counterions

and at higher concentrations a compact layer of directly adsorbed counterions. The charge density of the

topmost monolayer reduced by the charge of the inner Stern layer determines the ion distribution within

the diffuse layer. The prevailing ion distribution is given by solution of the nonlinear Poisson-Boltzmann

equation. The excess of ions can be readily translated in a corresponding refractive index profile. The

profile determines the reflectivity properties. Ellipsometric data modeled within this framework allow an

estimation of the extent to which ions enter the compact layer.

Fig. 12 sketches the model for the interface. At lower surface coverage most of the ions are

spread out within the diffuse layer leading to a pronounced refractive index profile. The

situation is sketched in Fig. 12a. At higher concentration some ions enter the adsorption

layer and form ion pairs with the headgroups accounted with a lower dn/dc-value as

compared to the bulk phase. The formation of this Stern layer effectively reduces the

surface charge and as a consequence the extension and the magnitude of the refractive

index profile of the diffuse layer decrease. This situation is sketched in Fig. 12b.

This model has been used for monitoring the formation of the Stern layer. The ion

distribution within the diffuse layer is determined by the total effective charge density

at the interface. The SHG measurements yield the number density and charge density
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Figure 13: The charge density of the compact Stern layer has been retrieved by optical means. The

surface charge refers to the number density of the cationic amphiphile reduced by the number of directly

bound ions within the Stern layer.

produced by the cationic amphiphilic monolayer. The effective charge density at the

interface is given by this value reduced by the number density of counterions within the

Stern layer. The corresponding refractive index of Stern and topmost monolayer is given

by an effective medium approach. Hence the optical properties of the monolayer are known

by independent means. Furthermore the refractive index profile of the diffuse layer is given

once the effective charge density at the interface is known. We used the experimental data

in order to retrieve the corresponding effective surface charge density. The results are

depicted in Fig. 13 starting in the vicinity of the extremum of the ellipsometric isotherm.

Hence, with this model we are able to monitor by purely optical means the extent to which

ions enter the compact Stern layer.

In short, ellipsometry applied to adsorption layers of ionic soluble surfactants does not

measure the surface excess. The ellipsometric signal may show a non-monotonic behaviour

which is caused by a redistribution of the ions between compact and diffuse layer. The

data analysis within the classical model of a charged double layer yields an estimate of

the prevailing ion distribution.

Ellipsometry applied to adsorption layers of nonionic surfactant directly yields the surface
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excess. It is therefore a valuable alternative to surface tension measurements, especially if

one considers rheological properties which require higher derivatives of the surface tension

isotherm.

8.5 Kinetics of absorption

Rapidly expanding liquid surfaces occur in many technical processes such as foam forma-

tion, spraying or painting, they are also omnipresent in nature, i.e. the oxygen exchange

in the lung. Surfactants play a crucial role in these processes. They stabilize the new

surfaces by a reduction of the surface tension. Inhomogeneities in surface coverage lead

to gradients in surface tension which in turn have a strong impact on bulk hydrodynamic

flow, a phenomenon also known as Marangoni flow. The overall dynamic behaviour is

very complex and despite many efforts far from understood [25]. The investigation re-

quires time resolution within the ms regime putting severe limitations on the choice of

the experimental technique. The maximum bubble pressure method [25] is most often

used to perform these types of studies but ellipsometry offers an interesting alternative

to supplement these investigations. This method relies on surface tension measurements

and the surface coverage is obtained using the equilibrium surface isotherm. The under-

lying assumption is that the surface is locally at equilibrium, however, in the time regime

of interest this may not be the case. As outlined in the theoretical section ellipsometry

measures directly the surface coverage for nonionic surfactants and provides in addition

the requested time resolution. The challenging part is the design of an experiment with

precisely defined boundary conditions required for modeling the underlying physics lead-

ing to the observed kinetic behavior. The most promising approaches produce an interface

with a non-equilibrium surface coverage, and maintain that surface coverage through the

flow of fluid in and out of the control volume. To satisfy the requirement of well-defined

boundary conditions, at the beginning of the flow a freshly formed surface must be created.

Several arrangements have been suggested such as the inclined plate [25], the overflowing

cylinder [26] or the use of a jet [27]. In all these approaches the surface has a defined age

at a given spot, hence the desired dynamic picture of the surfactant adsorption is obtained

by moving the sample relative to the light beam.
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Figure 14: Setup for an ellipsometric measurement on a jet. The distance between laser spot and nozzle

determines the age of the surface. (redrawn from Langmuir 15, 7530-7533 (1999))

The overflowing cylinder with its flat surface is very well suited for optical reflection tech-

nique. Water is pumped vertically trough a cylinder and allowed to flow over the rim in

a radial flow pattern. This experiment covers the time regime of 0.1 − 1s and has been

successfully used by Penfold et.al. [28] in neutron reflectometry and ellipsometric experi-

ments. A precision in the determination of the dynamic surface excess of 2 · 10−8mol/m2

has been demonstrated. Neutron reflectivity enabled the calibration of the ellipsometric

data which is important to avoid artifacts caused by changes in the ion distribution of ionic

surfactants. The more interesting time range of 1 − 20ms is covered by jet techniques.

The surfactant solution is pumped with a high speed through a nozzle. An ellipsometric

experiment performed on a jet is quite demanding and many subtle problems are caused

by the curved surface acting as a cylindrical lens. A recent feasibility study of Hutchi-

son et.al. demonstrates that these problems can be overcome [29]. The adsorption of a

cationic surfactant was monitored and the time dependence was found to obeye the Ward-

Tordai equation [30] providing evidence for a diffusion controlled adsorption kinetics of

the surfactant in this time regime. These studies suffer from a simultaneous measurement

of the flow field which is required to assess Maragoni currents induced by surface tension

gradients.
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Figure 15: Surface coverage measured with the setup sketched in Fig. 14. (redrawn from Langmuir 15,

7530-7533 (1999))

9 Principle of imaging ellipsometry

Some surfaces under investigation are laterally inhomogeneous on a micrometer scale due

to variations in the thickness or surface composition or due to changes in the orientational

order of the molecules at the interface. In this case the lateral inhomogeneity is imparted

to the properties of the reflected light. The most well-known imaging technique for a

visualization of these features is Brewster Angle Microscopy BAM [31, 34] which has

been successfully employed for characterizing the phase diagrams and the morphology of

Langmuir films. BAM is based on the principle that the reflectivity of the Ýp-polarized light

is zero at the Brewster angle. Any modification of the Brewster conditions, as for instance

the presence of a single monolayer, modifies the reflectivity. A decisive advantage of this

method vs. fluorescence microscopy [35] is that fluorescent labelling is not required. Also

the internal structures of domains can be assessed.

Ellipsometry can also be extended to an imaging technique which offers a wider field of

applications [9]. In contrast to BAM, imaging is not bound to the existence of a Brewster

angle and can even be employed for the investigation of monolayers on highly reflecting

supports.

Fig. (16a) provides a Nullellipsometric image of a self assembled monolayer of (Dimethyl-
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Figure 16: The lateral inhomogeneitity is transformed in the state of polarization. a) Nullellipsometric

image of a self assembled monolayer on a silicon wafer. The monolayer was patterned with the aid of a

mask and UV-light. The difference in the thickness between the dark and bright regions is 0.8nm b) At

high magnification problems arise due to the limited depth of field. The width of the bars are 1.9µm, the

mesh size is 10µm and imaging is performed at an angle of 53◦

chlorosilyl)-2-(p,m-chloromethylphenyl)ethan on silicon. The monolayer was photochem-

ically pattererned using UV-irradiation and an electron microscopy grid as a mask. The

difference in the thickness between dark and bright regions is 0.8 nm demonstrating the

high vertical resolution of this technique. At a higher magnification there are certain

problems arising from the limitation of the depth-of-field.

9.1 Depth of field problem

All the above mentioned imaging techniques work under an oblique angle of incidence and

as a result some peculiarities exist. Imaging under an oblique angle of incidence imposes

certain restrictions on the diameter and working distance of the objective. As a result the

resolution is limited to about 1− 3µm. A discussion of this issue can be found in [32].

The depth of field, t, of an objective is given by the numerical aperture A, the refractive

index n of the ambient medium, and the wavelength λ according to [33]:

t =
nλ

A2
(89)
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Depending on the angle of incidence, ϕ, and the numerical aperture, A, only a region of

the illuminated part of the sample is in focus. This region is of the order of 1 − 50µm.

This problem is illustrated in Figure (16b). The size of a bar is 1.9µm, the mesh size is

10µm and imaging was performed at ϕ = 53◦.

The depth-of-field problem is a severe limitation at higher magnification. A straightfor-

ward solution consists of a scan of the objective [34]. Only the area in focus is recorded

and the complete image is constructed by many stripes by imaging processing software.

This procedure yields sharp images of static objects. At the oil-water or air-water interface

it is only of limited use due to the prevailing convection.

Figure 17: Principle of ellipsometric microscopy. Full arrows symbolise the light path of illumination,

broken arrows stand for the observation, respectively. A parallel beam of polarised light is focussed into

an off-axis spot in the back focal plane of the lens. In the front focal plane of the lens, where the object

is located, this results in a parallel polarised beam of light hitting the object under a shallow angle of

incidence. Light reflected by the object is collected by the lens, passes a motorised polarization analyzer

and is focused onto a digital CCD camera. For clarity, several optical elements are omitted. (redrawn

from [36])

An elegant approach which overcomes these difficulties was suggested in the group of

Sackmann et al.. A parallel polarized laser beam was focused to an off axis spot in the

back focal plane of a microscope objective of high numerical aperture. The sample which is

located in the front plane is then illuminated by a parallel polarized beam of light incident

on the sample under an oblique angle. The exact angle of incidence is controlled by the
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exact position of the laser focus in the back focal plane. The image is formed by the same

objective used for illumination and the complete image is in focus [36].

The performance of this microscope is shown in Fig. 18. The sample consists of a pho-

topatterned LB film with dimensions indicated in the figure. The image on the left hand

side sketches the inner structure of the sample.

Figure 18: Schematic view of the micropatterned Langmuir-Blodgett film with all relevant dimensions;

Ellipsometric microscopy images of the sample. The angle of incidence was ϕ = 55.8◦. The gray scales

from black to white represent a change in ∆ of 120− 130◦. The scale bar has a length of 25µm. (redrawn

from [36])

Another elegant approach was suggested by Meunier et. al. who presented a custom made

objective based on a modified Schwarzschild objective. Its optic axis is perpendicular to the

studied layer and consequently the complete area is in focus. The design is ideally suited

for dynamic investigations and the alignment is easier than for the previously discussed

solution.

9.2 Beyond the diffraction limit

The high vertical resolution of ellipsometry is not matched by the achieved lateral res-

olution. The upper limit is given by diffraction and on the order of the wavelength of

light. Recently an experiment has been described which overcomes the diffraction limit

and allows a direct visualization of refractive index patterns with a much finer resolution
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[37]. The arrangement is based on a combination of Atomic Force Microscopy (AFM) and

Ellipsometry and the AFM tip dimensions determines the resolution.

The sample of interest is mounted on the base of a prism. The ellipsometer is operated

in the null mode and the total reflected light at the prism base is completely cancelled by

the setting of the polarization optics. This null setting is kept constant during the course

of the experiment. The metal AFM tip couples to the evanescent field and depending on

the local optical properties of the sample the null setting is out of tune. The intensity

at the detector is monitored while carrying out a topographic scan with a conventional

Atomic Force Microscope. Thus two images are simultaneously generated: a topographic

image by the AFM tip and an ellipsometric image which relates the intensity reading at

the detector with the x,y position of the tip. The latter contains information on refractive

index inhomogenity. This technique allowed for instance a visualization of 10 nm CDTe

particles within a polymer matrix. The topographic scan was not able to identify the

particles within the spincoated polymer film. However, due to the differences in the

refractive index it could be visualized by the ellipsometric image.

Compensator

Polarizer

Analyzer

Detector

Laser beam

AFM tip

Prism with sample

Figure 19: Sketch of the used apparatus
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