

Barium nitrate – $Ba(NO_3)_2$

MATERIAL PHYSICAL AND OPTICAL PROPERTIES

Crystal symmetry	cubic, P2 ₁ 3
Lattice constant	a=0.811nm
Density	$3.25~\mathrm{g/cm^3}$
Hardness	2.5-3 (Mohs
Stoke's shift	1048 cm ⁻¹
SRS-amplifications increment	11 cm/GW
Optical uniformity relative parameter $\Delta n/cm$	$(3+7)\times 10^{-6}$
Optical losses $\mu(\lambda)$, cm ⁻¹ (at $\lambda = 1.06 \mu m$)	< 0.005
Optical quality Δn	$< 5 \times 10^{-6}$
Anomalous birefrigence in some areas not exceed	5nm/cm

REFRACTIVE INDICES:

$\lambda = 0.5461 \; \mu \text{m}$	n = 1.5756	λ =2.00 μ m	n=1.5452
$\lambda = 1.064 \ \mu \text{m}$	n = 1.5551	$\lambda = 2.50 \ \mu \text{m}$	n = 1.5399

PREPARATION OF FINISHED ELEMENTS

Surface quality: 40/20 scr/dig Flatness: $\lambda/4$ @ 633 nm

Damage threshold @ 532 nm for ns pulses: 10 J/cm^2 – in the volume, 4 J/cm^2 – at the surface Laser crystals of Maximum elements of dimensions $10 \times 10 \times 100$ mm can be produced.

Ba(NO ₃) ₂ Stokes @	$Ba(NO_3)_2$ Stokes @
pump: 1064 nm,	pump: 532 nm,
oscil. coef.: 1048.6 cm ⁻¹	oscil. coef.: 1048.6 cm ⁻¹
1 Stoke, 1197 nm	1 Stoke, 563 nm
2 Stoke, 1369 nm	2 Stoke, 598 nm
3 Stoke, 1599 nm	3 Stoke, 638 nm
4 Stoke, 1924 nm	4 Stoke, 684 nm
1 Anti-Stoke, 957 nm	1 Anti-Stoke, 503 nm

Comparing $Ba(NO_3)_2$ and KGW crystals for Raman applications $Ba(NO_3)_2$ are more effective in case of ns pulses, KGW and KYW crystals – in case of ps.

 ${
m Ba(NO_3)_2}$ crystals are used as the substitution of laser radiation frequency converters based on organic dye solution. This greatly improves the devices' performance characteristics.

Also the ${\rm Ba(NO_3)_2}$ crystals are used as Stimulated Raman Scattering (SRS) converters that provide non-linear conversion of frequency radiation of laser due to the stimulated Raman scttering effect. They can be used as frequency converters in tunable lasers for extention of tuning range.

Ba(NO₃)₂ crystals are free from bubbles and inclusions. The optical uniformity of Ba(NO₃)₂ crystals is comparable with the quality of barium and calcium fluoride crystals. Transmission band is from 0.35 μ m up to 1.8 μ m. The crystals can be used in the range from 1.8 μ m up to 2.4 μ m as optical filters.

Achieved radiation conversion efficiencies into first and second Stock's are $\sim\!60\%$ and $\sim\!20~\%$ respectively @ 532 nm pump.

Optical transmission of Ba(NO₃)₂ crystal

Please contact EKSMA for further information or nonstandard specifications.